

Design results of a 500 kJ / 200 kW conduction cooled MgB2 SMES magnet

Umberto Melaccio¹, Antonio Morandi¹, Pier Luigi Ribani¹, Simonetta Turtù², Luigi Affinito², Matteo Tropeano³ and Alessio Capelluto³

¹ University of Bologna – Department of Electrical, Electronic and Information Engineering

² Department of Fusion, ENEA Frascati Research Center, Frascati 00044, Italy ³ ASG Superconductors, Corso F. M. Perrone 73R, 16152 Genoa, Italy

14th European Conference on Applied Superconductivity, Glasgow – Scotland Wednesday, September 4, 2019

See also 3-LP-LE-S13

The DRYSMES4GRID project: development of a a 500 kJ / 200 kW SMES system with conduction cooled based on MgB2 SMES

MISE - Italian Ministry of Economic Development

• Time: June 2017 – June 2020 (+1)

Project Coordinator:

Mechanical Analysis

Mechanical design includes

- Pretensioning due to winding of the coil
- Thermal contraction during cool down •
- Lorentz force •

Von Mises stress

Elastic's moduli and thermal expansion coefficients of all materials taken from

- K Konstantopoulou et al., "Electro-mechanical characterization of MgB2 wires for the SC Link Project at CERN", SUST 2016
- J. W. Ekin, Experim. Techniques for Low Temp. Measurements, OUP, 2006
- P. Bauer et al., EFDA Material Data Compilation for Supercond. Simulation
- CRYOCOMP

Equivalent Young's modulus of the tape of 157.3 MPa obtained from weighted average

ANSYS

Strain

Columbus Superconductors SpA, Genova, Italy

Partners

- University of Bologna
- ICAS The Italian Consortium for ASC, Frascati (Rome)
- RSE S.p.A Ricerca sul Sistema Energetico, Milan
- CNR SPIN, Genoa

full system development + testing

Reference Conductor – Rectangular tape with 6 filaments

	Composition and characteristics			
1,1 mm	MgB ₂	29 %		
	Monel 400 (external sheath)	44 %		
	Nickel 201 (internal matrix)	27 %		
	Number of filaments	6		
	Thickness	1.1 mm		
	Width	2.05 mm		
	Cross section	2.05 mm ²		
	Twis pitch	600 mm		

+ 500 µm Cu strip applied at one side by tin-soldering 1+ 25 μm electricla insulating wrapping

Main characteristics of the designed 500 kJ / 200 kW SMES coil

Inner radius, mm	300		0.
Height, mm	1200.6		•
Number of layers	10	1	
Number of turns per layer	522		
Length of cable, km	10.1		
Voltage of the dc bus, V	750	E	
Min Current, A	266.6	509	
Max current, A	467	E I	×
Field on conductor (at Imax), T	1.63		
I/Ic ratio (at Imax)	0.6		
Inductance, H	6.80		
Total eneregy (at Imax), kJ	741	*	
Deliverable energy, kJ	500.4		2
Dump resistance, Ω	2,14		
Max adiabatic hot spot temp., K	95.6		

Electric field

Electrical insulation

Voltage surge (1 us) on the coil due to switching Uneven distribution of voltage among turns

43666

655004

Versus ground voltage distribution of the coil calculated via lumped parameter circuit

- The SMES cannot be discharged below I_{min} = 267 A if the power of 200 kW is to be supplied/ absorbed $(I_{min} = P/V_{dc})$
- The designed coil fullfills the specifics (200 kW 2,5 s) with an operaing temperature T \leq 16 K and a max. current I_{max} = 467 A

Material properties data-base

Young's modulus of tape

Table 3. Young's modulus of each component of the MgB ₂ wife.						
	MgB ₂ [6]	Nb-Ni [6]	Monel [21]	Ni [22]	Nb [22]	Cu [22]
E (GPa)	97	230	179	207	103	118

Equivalent Young's modulus of the tape obtained from the weighted average of modulus of components

Reference tape	157.23 [GPa]
Aluminium 5083	80 [GPa]
Stainless steel	180 [Gpa]
Copper strip (RRR 100)	137 [GPa]
Fiber Glass G10-CR	35 [GPa]

• K Konstantopoulou, A Ballarino, A Gharib, A Stimac, M Garcia Gonzalez, A T Perez Fontenla and M Sugano, "Electro-mechanical characterization of MgB2 wires for the Superconducting Link Project at CERN"

Vs. ground voltage of 1st layer's turns at chopper switching

Thermal analysis

Steady-state thermal flows and temperatures

RDK-415D Typical Load Map (60Hz)

1st Stage Temperature (K)

• EFDA Material Data Compilation for Superconductor Simulation, P. Bauer, H. Rajainmaki, E. Salpietro

Thermal expansion coefficients

Thermal capacity and thermal conductivity

Temperature distribution a the end of one charge/discharge cycle

Inputs

15

T6

- AC loss power on each turn
- Eddy current power on the copper
- Irradiation power on the external surface
- Conduction power on the insertion points at the top of the magnet
- The drawn power of the cryocooler at the middle point of the cooling layer

Temperature rise of 1 cycle <0,5 K

SEE3-LP-LEESERPETALESON/AC-LOSS/AND-QUENCH